First results from SAM-FP: Fabry-Perot observations with ground-layer adaptive optics - the structure and kinematics of the core of 30 Doradus

Mendes de Oliveira, C.; Amram, P.; Quint, Bruno C.; Torres-Flores, S.; Barbá, R.; Andrade, D.
Monthly Notices of the Royal Astronomical Society, Volume 469, Issue 3, p.3424-3443 (2017).


The aim of this paper is to present the first data set obtained with SOAR Adaptive Module-Fabry-Parot (SAM-FP), a Fabry-Perot instrument mounted inside the SOAR telescope Adaptive-Optics Module. This is the only existing imaging Fabry-Perot interferometer using laser-assisted ground-layer adaptive optics. SAM-FP was used to observe the ionized gas, traced by Hα, in the centre of the 30 Doradus starburst (the Tarantula Nebula) in the Large Magellanic Cloud, with high spatial (˜0.6 arcsec, or 0.15 pc) and spectral (R ≃ 11 200) resolution. Radial velocity, velocity dispersion and monochromatic maps were derived. The region displays a mix of narrow, σ ˜ 20 km s-1 profiles and multiple broader profiles with σ ˜ 70-80 km s-1, indicating the complex nature of the nebula kinematics. A comparison with previously obtained VLT/FLAMES spectroscopy demonstrates that the data agree well in the regions of overlap, but the Fabry-Perot data are superior in spatial coverage. A preliminary analysis of the observations finds a new expanding bubble south of R136, with a projected radius of r = 5.6 pc and an expansion velocity of 29 ± 4 km s-1. In addition, the first-time detailed kinematic maps derived here for several complexes and filaments of 30 Doradus allow identification of kinematically independent structures. These data exemplify the power of the combination of a high-order Fabry-Perot with a wide-field imager (3 × 3 arcmin2 GLAO-corrected field of view) for high-resolution spatial and spectral studies. In particular, SAM-FP data cubes are highly advantageous over multifibre or long-slit data sets for nebula structure studies and to search for small-scale bubbles, given their greatly improved spatial coverage. For reference, this paper also presents two appendices with detailed descriptions of the usage of Fabry-Perot devices, including formulae and explanations for understanding Fabry-Perot observations.