Languages

ELDAR, a new method to identify AGN in multi-filter surveys: the ALHAMBRA test-case

Chaves-Montero, Jonás; Bonoli, Silvia; Salvato, Mara; Greisel, Natascha; Díaz-García, Luis A.; López-Sanjuan, Carlos; Viironen, Kerttu; Fernández-Soto, Alberto; Pović, Mirjana; Ascaso, Begoña; Arnalte-Mur, Pablo; Masegosa, Josefa; Matute, Israel; Márquez, Isabel; Cenarro, A. Javier; Abramo, L. Raul; Ederoclite, Alessandro; Alfaro, Emilio J.
eprint arXiv:1707.07690
07/2017

ABSTRACT

We present ELDAR, a new method that exploits the potential of medium- and narrow-band filter surveys to securely identify active galactic nuclei (AGN) and determine their redshifts. Our methodology improves on traditional approaches by looking for AGN emission lines expected to be identified against the continuum, thanks to the width of the filters. To assess its performance, we apply ELDAR to the data of the ALHAMBRA survey, which covered an effective area of $2.38\,{\rm deg}^2$ with 20 contiguous medium-band optical filters down to F814W$\simeq 24.5$. Using two different configurations of ELDAR in which we require the detection of at least 2 and 3 emission lines, respectively, we extract two catalogues of type-I AGN. The first is composed of 585 sources ($79\,\%$ of them spectroscopically-unknown) down to F814W$=22.5$ at $z_{\rm phot}>1$, which corresponds to a surface density of $209\,{\rm deg}^{-2}$. In the second, the 494 selected sources ($83\,\%$ of them spectroscopically-unknown) reach F814W$=23$ at $z_{\rm phot}>1.5$, for a corresponding number density of $176\,{\rm deg}^{-2}$. Then, using samples of spectroscopically-known AGN in the ALHAMBRA fields, for the two catalogues we estimate a completeness of $73\,\%$ and $67\,\%$, and a redshift precision of $1.01\,\%$ and $0.86\,\%$ (with outliers fractions of $8.1\,\%$ and $5.8\,\%$). At $z>2$, where our selection performs best, we reach $85\,\%$ and $77\,\%$ completeness and we find no contamination from galaxies.