The Gaia-ESO Survey: properties of newly discovered Li-rich giants

Smiljanic, R.; Franciosini, E.; Bragaglia, A.; Tautvaisiene, G.; Fu, X.; Pancino, E.; Adibekyan, V.; Sousa, S. G.; Randich, S.; Montalban, J.; Pasquini, L.; Magrini, L.; Drazdauskas, A.; Garcia, R. A.; Mathur, S.; Mosser, B.; Regulo, C.; de Assis Peralta, R.; Hekker, S.; Feuillet, D.; Valentini, M.; Morel, T.; Martell, S.; Gilmore, G.; Feltzing, S.; Vallenari, A.; Bensby, T.; Korn, A. J.; Lanzafame, A. C.; Recio-Blanco, A.; Bayo, A.; Carraro, G.; Costado, M. T.; Frasca, A.; Jofre, P.; Lardo, C.; de Laverny, P.; Lind, K.; Masseron, T.; Monaco, L.; Morbidelli, L.; Prisinzano, L.; Sbordone, L.; Zaggia, S.
eprint arXiv:1805.07077


We report 20 new lithium-rich giants discovered within the Gaia-ESO Survey, including the first Li-rich giant with evolutionary stage confirmed by CoRoT data. Atmospheric parameters and abundances were derived in model atmosphere analyses using medium-resolution GIRAFFE or high-resolution UVES spectra. These results are part of the fifth internal data release of Gaia-ESO. The Li abundances were corrected for non-LTE effects. We used Gaia DR2 parallaxes to estimate distances and luminosities. The giants have A(Li) > 2.2 dex. The majority of them (14 out of 20 stars) are in the CoRoT fields. Four giants are located in the field of three open clusters but are not members. Two giants were observed in fields towards the Galactic bulge but are likely in the inner disk. One of the bulge field giants is super Li-rich with A(Li) = 4.0 dex. We identified one giant with infrared excess at 22 microns. Two other giants, with large vsin i, might be Li-rich because of planet engulfment. Another giant is found to be barium enhanced and thus could have accreted material from a former AGB companion. Otherwise, besides the Li enrichment, the evolutionary stages are the only other connection between these new Li-rich giants. The CoRoT data confirm that one Li-rich giant is at the core-He burning stage. The other giants are concentrated in close proximity to the RGB luminosity bump, the core-He burning stages, or the early-AGB. This is very clear when looking at the Gaia-based luminosities of the Li-rich giants. This is also seen when the CoRoT Li-rich giants are compared to a larger sample of 2252 giants observed in the CoRoT fields by the Gaia-ESO Survey, which are distributed all over the RGB in the Teff-logg diagram. These observations show that evolutionary stage is a major factor behind the Li enrichment in giants. Other processes, like planet accretion, contribute to a smaller scale. [abridged]